
Cross-realm Kerberos implementations

Esan Wit
Esan.Wit at os3.nl

Mick Pouw
Mick.Pouw at os3.nl

Supervisors:
Michiel Leenaars
Rick van Rein

July 11, 2014

Acknowledgements

We would like to acknowledge Michiel Leenaars and Rick van Rein for their
support and feedback during the course of this project. Offering clear insights
and helpful commentary during this project to keep us focused and moving
forward.

I

Abstract

When someone wants to use a service, a person has to provide cre-
dentials. These credentials have to be remembered by the user and also
needs to be filled in everywhere. This is where Kerberos comes in. With
the help of Kerberos its single sign-on possibilities and cross-realm capa-
bilities, this could all be taken care of for the user. This would require
several Kerberos KDCs configured with trust relationships. Due to the
nature of Kerberos and its philosphy of shared keys this imposes a heavy
administrative burden.

We look at four major implementations, namely Heimdal, MIT Ker-
beros 5, GNU Shishi and Active Directory. This paper describes the
research that has been conducted to see how well these four implemen-
tations of Kerberos work together and highlight several points of interest
when using these implementations in a mixed environment. Furthermore
we discuss several focus points that play an important role in cross-realm
behaviour and techniques that may assist in accomplishing dynamic con-
figuration and easing the administrative complexity.

II

Contents

1 Introduction 1
1.1 Related work . 1
1.2 Research questions . 2

1.2.1 Scope . 2

2 Background 4
2.1 Kerberos protocol . 4
2.2 Cross-realm authentication . 5

3 Approach 7
3.1 Search paths . 7
3.2 Cross compatibility . 7

3.2.1 Cryptographic algorithms 9
3.3 Public-key cryptography . 9
3.4 Cross-realm compatibility . 10

4 Results 12
4.1 Search Paths . 12

4.1.1 Configuration files . 12
4.1.2 DNS search . 12

4.2 Interoperability . 13
4.2.1 Cryptography . 14

4.3 Public-key cryptography . 14
4.4 Cross-realm interoperability . 15

4.4.1 Active Directory . 15

5 Dynamic cross-realm authentication 17
5.1 Key sharing . 17

5.1.1 PKI . 17
5.1.2 DANE . 17

5.2 Key revocation . 18
5.3 Trust policies . 18
5.4 Time synchronisation . 18

6 Conclusion 20

7 Future work 21

References 22

A PKINIT EKU Extensions 24

III

1 Introduction

Kerberos 5 is a very popular authentication protocol for internal networks. It
is used by software like Samba and Active Directory. Kerberos was used to
facilitate authentication in untrusted networks. Compared to current technolo-
gies it is comparable to the use of OAuth1 on the internet when used only for
authentication.

Kerberos can be used for cross-realm authentication in predefined configu-
rations. This project looks into compatibility issues when attempting dynamic
cross-realm configurations. It should be noted that as of this moment there is no
proper support for dynamic cross-realm configuration. As such the project aims
are to figure out the interoprability options between various implementations
and the requirements for a dynamic cross-realm configuration.

Four implementations of Kerberos will be analysed, namely: MIT Kerberos
52, Heimdal3, Active Directory4 and GNU Shishi5. As mentioned this research
will focus on the cross compatibility of these implementations and how to iden-
tify other realms and use these for cross-realm authentication.

The future goal is to pave way for a system which can be used to allow users
the use of a variety of identity providers chosen by the user to authenticate
themselves on services offered on the internet. Users would be able to choose an
identity provider with conditions they themselves approve of. This is to avoid
dependence on commercial companies such as Facebook, Google, Twitter, etc.
as identity providers (often OAuth).

This report will detail some of the relevant research already performed after
which the scope of this project will be explained further. Then some background
information is included for readers not familiar with the basics of Kerberos.
Afterwards the approach for the compatibility tests will be discussed along with
the results. Finally we end with a discussion of the requirements for dynamically
creating cross-realm configurations and a conclusion.

1.1 Related work

Much research has been performed on the Kerberos protocol, significantly less
on the implementations. Some research on the implementations was performed
in 2001 into the cross-realm options between MIT Kerberos 5 and Active Direc-
tory[1]. This research focused on the differences between the implementations
and how cross-realm was implemented.

A protocol study in 2005 analysed the behaviour of cross-realm authen-
tication and identified certain problem areas inherent to the Kerberos archi-
tecture[2]. When transitive trust is enabled, that is a chain of trust between

1http://oauth.net
2http://web.mit.edu/kerberos/
3http://www.h5l.org/
4http://technet.microsoft.com/en-us/library/bb742437.aspx
5http://www.gnu.org/software/shishi/manual/shishi.html

1

multiple Keberos realms, it is possible for a rogue implementation in the chain
to fake request for trusted realms.

More recent research in 2007 highlighted some scalability issues within Ker-
beros due to the symmetric key nature of the protocol[3]. The administrative
requirements to manage key changes and rollover procedures made it impossible
to maintain in a large distributed manner.

In 2008, a survey was conducted to see how a good implementation of a
decentralised access control mechanism in distributed file systems should func-
tion [4]. And although Kerberos was also analysed it was determined that web
based authentication methods showed most potential to be implemented. Ker-
beros was rejected due to the administrative burden when running at a larger
scale. This goes to show that Kerberos although a good protocol needs more
tools to facilitate production environments.

Research performed by Kamada et al. in 2008 implies that the authentication
path created by cross realm authentication may impose undue limits on client
libraries[5]. As such an amendment was researched to allow the client to offload
path verification to the TGS.

In regards to dynamically configurable cross-realm authentication in Ker-
beros there has been a draft for PKCROSS specifying the use of public key
cryptography for cross-realm operations[6]. This draft however never matured
into a standard and for reasons unknown was allowed to expire in 2001. The
PKCROSS standard would have specified an addendum to the Kerberos proto-
col allowing different realms to communicate using public key cryptography as
opposed to a manually configured symmetric key.

1.2 Research questions

Our main goal is to analyse the options for dynamically configurable cross-realm
authentication and find areas in which cross-realm behaviour can be improved.
Before this can be answered there are several other topics that must be analysed.
• Is it possible to give one user access to a service from a different realm

and from a different implementation?
• Is it possible to do cross-realm authentication between services? If not,

how can we implement it?
• Can a service be authenticated to a user that uses a different Kerberos

implementation? What if the user or service is a different realm
• How could a service identify itself to other Kerberos implementations?
• How can the Kerberos implementations share cryptographic algorithms?

1.2.1 Scope

This research is focused on Kerberos 5. Due to the time available for this
research, the scope was narrowed down to exclude making changes to any of
the implementations to be tested. Also default configurations were used for
either source builds or versions stored in package repositories. Lastly the focus

2

is on the implementations “as is”; instead of how the implementations should
be according to specifications.

The implementations looked at are listed below.
Active Directory

This is the default utility used by many Windows domains to manage
users due to built in support by Microsoft. It is built on the Kerberos
standard but has several quirks in odd places.

GNU Shishi
Shishi is an open source GNU implementation of the Kerberos protocol it is
newer then other implementations analysed and holds great expectations.

Heimdal
Heimdal is a European implementation of the Kerberos protocol it was
developed at roughly the same time as MIT Kerberos which was unavail-
able due to U.S. export laws and the encryption used. Heimdal, like Shishi
and MIT Kerberos 5, is also available open source.

MIT Kerberos 5
The MIT Kerberos 5 implementation was developed by MIT and is avail-
able, as open source software, outside the US and Canada since October
20036.

6http://web.mit.edu/kerberos/dist/index.html

3

2 Background

For readers unfamiliar with the Kerberos 5[7] authentication flows and cross-
realm authentication a small explanation is provided. This explanation is meant
to provide essential knowledge for understanding this report and is not a full
description of the Kerberos 5 protocol.

2.1 Kerberos protocol

Kerberos 5 is a seasoned authentication infrastructure that is used in large
environments and enterprises. It offers a mechanism to establish authentication
but not necessarily authorisation of clients. Authentication is based on shared
secrets and makes use of tickets. These tickets are encrypted with the shared
secret, most often a symmetric key, and are only meant to be decrypted by the
intended receiver, the client, a service, or the key distribution center (KDC).
The KDC will, when requested, send a ticket that proves the validity of a client.
However the ticket is encrypted with the secret that is shared between client
and KDC. As a result only the client is capable of decrypting the actual ticket
upon receival. This design makes sure it can be used in untrusted networks like
the internet, since the key is not send over the network. Kerberos also provides
support for public key cryptography via PKINIT.

Figure 1: Kerberos 5 authentication flow

As illustrated in figure 1, The client first has to authenticate with the KDC.
This is done by an authentication request(AS REQ), after which the KDC
replies with an authentication response(AS REP). This response contains a
ticket granting ticket (TGT) which can be used by the client to request new
tickets without having to authenticate again.

4

When a client attempts to authenticate to a service, the client requests a
new ticket from the KDC that authenticates the client to the service using the
TGT(TGS REQ). The KDC will check the TGT for a matching identity and
then issue a ticket that can be authenticated by the service(TGS REP). The
client can then simply send the received ticket to the service which can verify
the users identity.

2.2 Cross-realm authentication

When adding a remote realm, in which there is a service for which we wish to
authenticate, the flow is adjusted a little, which can be seen in figure 2.

Figure 2: Kerberos 5 cross-realm authentication flow

With the remote KDC being in a new realm, and the service only accepting
clients authenticated by the the remote KDC, the client needs a way to authen-
ticate with the service using the local KDC. This is called cross-realm authen-
tication. The local and remote KDCs are configured to perform cross-realm
authentication in which a client from MIT.OS3.NL can authenticate itself to
use a service from HEIMDAL.OS3.NL.

This is achieved by authenticating the user to its local KDC, which in this
case is the MIT.OS3.NL KDC. First an authentication request must be done in
which the KDC responds with an authentication reply, AS REQ and AS REP
same as in 1. But the service the client wants to use is in a different realm.
In a cross-realm setup the client would request a ticket from the local KDC
(TGS REQ 1). The local KDC will provide a ticket which the client can provide
to the remote KDC to authenticate as a client from the local realm (TGS REP
1). The client can then contact the KDC in the remote realm and provide

5

the ticket retrieved in exchange for a ticket that authenticates the user to the
service(TGS REQ 2 and TGS REP 2).

Once this ticket is granted the client can authenticate to the remote service
and has successfully completed the cross-realm authentication.

6

3 Approach

The research is split into several experiments and smaller research parts. These
parts are discussed below and should offer more insights into the total compati-
bility of the various implementations. First the use of DNS search paths by the
implementations to find Kerberos servers is checked. Then the interoperability
between implementations for basic Kerberos functionality is analysed. Building
on that we analyse public-key cryptography support for client authentication.
The behaviour concerning cross-realm configurations is also test between the
various implementations.

3.1 Search paths

Kerberos stores a lot of information for path-finding in DNS SRV and TXT
records. TXT records can be used to indicate which realm a host resides in
and SRV records can be used to define where the KDC of a particular realm
is located. The behaviour of these search paths is paramount when working
with poorly configured clients. As such the behaviour of the various clients is
analysed and checked using Wireshark.

3.2 Cross compatibility

The first thing that needs to be examined, is how the different implementations
work together. It requires to check each client side implementation of Kerberos
against the possible KDC and TGS implementations. To achieve this, we have
split the test in two parts. The first part includes the client authenticating with
the Kerberos service and getting a TGT ticket. For test the client authenticates
using a password.

The second part is testing if a client holding such a ticket is capable of using
a service that handles authentication via Kerberos. This requires the service to
be able to retrieve the key used by the Kerberos server to encrypt the tickets
intended for the service.

The services use Kerberos using the GSSAPI[8]. GSSAPI in turn uses the
implementation available on the system which is one of implementations we
are focusing on for this research. Because the services are not able to enter a
password they use the de facto standard for services of using a krb5.keytab

file. This is a file that most implementations can read in an automated fashion
to enable host and service authentication.

Active Directory offers a ktpass.exe executable whilst Heimdal ktutil util-
ity to create or export keytab files containing specific credentials. These files
function as a binary password store used by the services to decrypt the pass-
words supplied by clients in service tickets. Shishi does not support keytab
files but instead uses a text alternative in which key information is stored in
an encoded format. It should also be noted that these files are meant to be
access-limited as they contain passwords in the clear.

7

Testing in the first part is done by attempting to request a ticket from the
TGS using the provided utilities. For MIT Kerberos 5 and Heimdal the kinit

utility is used. For Shishi the shishi utility is used. Testing is considered
successful once a ticket is obtained. Table 3.1 contains a list of all combinations
tested for obtaining a ticket for a client. It should be noted that the Active
Directory client is used to refer to the Windows implementation. We refer
to this as Active Directory because other implementations, for example MIT
Kerberos for Windows, exist and thus referring to Windows could be confusing.

Client Server
Active Directory Active Directory

Heimdal Active Directory
Heimdal Heimdal
Heimdal MIT Kerberos 5
Heidmal Shishi

MIT Kerberos 5 Active Directory
MIT Kerberos 5 Heimdal
MIT Kerberos 5 MIT Kerberos 5
MIT Kerberos 5 Shishi

Shishi Active Directory
Shishi Heimdal
Shishi MIT Kerberos 5
Shishi Shishi

Table 3.1: Implementations of clients and servers tested for protocol compliance

For the second part tests are performed by attempting to use a service which
delegates authentication to Kerberos. The service chosen is SSH. Because many
services use Kerberos via the GSSAPI, SSH included, it was decided to not test
other applications since the purpose of this research is to determine compat-
ibility of Kerberos implementations themselves and not GSSAPI compliance.
Table 3.2 contains a list of all combinations tested for authenticating a client
for SSH.

For Shishi this turned out to be impossible because it turned out that Shishi
had not yet implemented support for GSSAPI, or any other API. Attempts were
made to use a telnet utility patched to work with Shishi however the utility did
not communicate with Shishi.

Due to the integration of Active Directory and Windows we were unable to
find a suitable service to test the Windows client side implementation against
implementations other then Active Directory. As such Active Directory was
tested solely for compliance to the Kerberos 5 protocol and interoperability
with other clients. Active Directory was correctly used for authentication of
a Windows 7 workstation but other tools were not found to test the required
functionality.

8

Client Server
Active Directory Active Directory

Heimdal Active Directory
Heimdal Heimdal
Heimdal MIT Kerberos 5
Heidmal Shishi

MIT Kerberos 5 Active Directory
MIT Kerberos 5 Heimdal
MIT Kerberos 5 MIT Kerberos 5
MIT Kerberos 5 Shishi

Table 3.2: Combinations tested for protocol compliance between services and
kerberos implementations

3.2.1 Cryptographic algorithms

Kerberos uses many different cryptographic algorithms and these are not al-
ways compatible. Some implementations may not yet possess the newest cryp-
tographic algorithms added to the standard this could impose limits on the
compatibility between clients and servers of different implementations. The
opposite is also true some implementations may support outdated and broken
algorithms as a means of providing backward compatibility. As such an overview
will be provided of the supported algorithms.

3.3 Public-key cryptography

Kerberos also includes support for public-key cryptography for initial authenti-
cation(PKINIT) [9]. This means that a client can authenticate using an X.509
certificate instead of a static password. Public-key cryptography can be used
to separate the security of the communications from password complexity. Also
public-key cryptography allows the use of Diffie-Hellman to determine a secure
session key. Furthermore authenticity of the KDC and client can easily be con-
firmed by checking signatures on the arrival of requests.

PKINIT supports this for the initial authentication of clients. Initial au-
thentication is the authentication used by a client to request the initial Ticket
Granting Ticket (TGT) from the KDC.

Tests were performed to analyse the behaviour of the various implementa-
tions and their compatibility for PKINIT.

We were unable to test compatibility with Active Directory and Shishi. The
former due to complications in the certificates used by Active Directory and
the second because Shishi has not yet implemented PKINIT support. Hence
these tests are limited to Heimdal and MIT Kerberos 5. Both support the same
form of certificate which uses the Extended Key Usage option of the X.509
certificates. X.509 certificates are used to maintain a chain of trust and all
relevant information for use in PKINIT is contained in defined extension fields.

9

For Active Directory this used to be in the dNSName Subject Alternative
Name and the official standard uses a specially designed field for PKINIT,
id-pkinit-san. Newer version of Active Directory should support both stan-
dards but only give out certificates following the official specification. However
due to time constraints and configuration difficulties we were unable to test
PKINIT support with Active Directory. According to mailing lists Active Di-
rectory has been in compliance with the standard in Windows 2008 and newer
versions7.

The tests performed were to create valid certificates according to documented
procedures and then subsequently using these certificates in an attempt to re-
trieve a TGT, see appendix A for the extensions used. This resulted in four
tests to cover all scenarios with only MIT Kerberos 5 and Heimdal participat-
ing, namely MIT Kerberos 5 to MIT Kerberos 5, Heimdal to Heimdal, Heimdal
to MIT Kerberos 5, and MIT Kerberos 5 to Heimdal.

3.4 Cross-realm compatibility

Having established which implementations can operate together the next phase
is to check support and options for cross-realm trusts. This is tested by config-
uring a trust relationship in each way between the various KDCs and analysing
their behaviour.

Tests are performed by letting a client of one realm use a service registered
in another realm. The service used is once more SSH and success is defined as
the correct login. It should be noted that it is important to include a .k5login

file to allow clients from another realm to authenticate as a user. By default the
SSH server only allows clients from the default realm to authenticate provided
that the username matches the client principal.

GNU Shishi was found to not yet support cross-realm authentication, al-
though noted that it is expected by the developers that one week is required to
implement this functionality. Thus a cross-realm trust is established between
combinations of Active Directory, Heimdal, and MIT Kerberos 5. A two-way
trust is configured and then the connection is tested in both ways. Table 3.3
shows the combinations tested.

7http://mailman.mit.edu/pipermail/kerberos/2010-August/016343.html

10

Local KDC Remote KDC
Active Directory Active Directory
Active Directory Heimdal
Active Directory MIT Kerberos 5

Heimdal Active Directory
Heimdal Heimdal
Heimdal MIT Kerberos 5

MIT Kerberos 5 Active Directory
MIT Kerberos 5 Heimdal
MIT Kerberos 5 MIT Kerberos 5

Table 3.3: Configurations tested for cross-realm authentications

11

4 Results

4.1 Search Paths

To work with Kerberos, the client must first be configured on what realm to
use. This can be achieved in two ways which will be discussed. The first is by
statically configuring what realm to use and where the realm can be located.
This is done via configuration files. The second method is by specifying the
appropriate DNS records.

4.1.1 Configuration files

Both Heimdal and MIT Kerberos 5 use the same configuration file, namely
krb5.conf which can be found in the /etc folder. When configuring to connect
to a realm, one must add the realm to this configuration file in a specific format.

AD. OS3 .NL = {
kdc = ad . os3 . n l
admin server = ad . os3 . n l

}

4.1.2 DNS search

When a Kerberos KDC is not configured at the client side, the Kerberos client
must find a way to the specified Kerberos realm. Without any configuration
Kerberos will default to DNS. More specific to SRV[10] and TXT records. An
example of such SRV records are given below.

k e r b e r o s . udp . mit . os3 . n l IN SRV 88 0 1 mit . os3 . n l .
k e r b e r o s . t cp . mit . os3 . n l IN SRV 88 0 1 mit . os3 . n l .

Tests have shown that the SRV records are used by all four implementations if
no configuration is present.

The TXT records are used to locate what realm a certain domain is in. For
this a record is used at _kerberos.DOMAIN for the domain in question. When
a KDC has these DNS records, the clients will no longer have to configure the
realm location in the configuration file. Instead specifying the the realm when
attempting to gain the initial ticket is possible. Without client configuration
the line below would function, using default settings, if the DNS is properly
configured.

k i n i t client@SOME .REALM. OS3 .NL

One observation showed that the Heimdal kinit utility attempts to contact
the known TGS for a service ticket if configuration was lacking. However due
to time constraints it could not be determined if this was intentional or not.

12

4.2 Interoperability

As described in section 3.2 several tests were performed to determine the in-
teroperability between existing Kerberos implementations. Table 4.1 contains a
summary of the findings which indicates the interoperability and what form of
communication can take place between different implementations.

KDC
Client Active Directory Heimdal MIT Kerberos 5 Shishi
Active Directory 3
Heimdal 3 3 3 3
MIT Kerberos 5 3 3 3 3
Shishi 3 3 3 3

Service Active Directory Heimdal MIT Kerberos 5 Shishi
Active Directory 3
Heimdal 3 3 3 3
MIT Kerberos 5 3 3 3 3
Shishi 7 7 7 7

Table 4.1: Compatibility between implementations

The different implementations when concerning client and KDC communi-
cation appears to be following protocol and can be achieved almost out of the
box. The first half of the table shows the possibility to communicate between
a client8 and the KDC implementation of a given producer. Please note that
Active Directory could not be properly tested as described in 3.2.

It should be noted that the Windows ktpass.exe executable creates a keytab
file which was incompatible with the MIT Kerberos 5 and Heimdal implemen-
tations. A working keytab file was created using the MIT Kerberos 5 ktutil

utility using identical settings as provided to Active Directory.
When looking at the second half of the table, which concerns a service with

a Kerberos implementation, one can deduce that Shishi does not work with
any of the implementations. This is due to the fact that Shishi does not have
the GSSAPI implemented as of version 1.0.29. Due to the lack of GSSAPI,
many services that use Kerberos in combination with GSSAPI will be unable to
communicate with Shishi. A service that provided a compatible interface with
Shishi could not be found. As such we were unable to test Shishi using a live
service. However it was possible to use a keytab file, converted to the Shishi
format using keytab2shishi utility, to retrieve a service ticket which implies
that once GSSAPI support is implemented it should work as expected.

During the interoperability tests, we encountered issues regarding the Heim-
dal kinit client. The kinit utility ignored the /etc/hosts file and required a
correctly configured DNS in order to locate the KDC. This behaviour was ob-
served only under Ubuntu 12.04 and was not exhibited under OS X 10.9. The

8e.g. Kinit or similar
9http://www.gnu.org/software/shishi/manual/shishi.html#Features-and-Status

13

reason for this behaviour could not be ascertained.

4.2.1 Cryptography

Kerberos uses cryptography to encrypt tickets. The different implementations
also use different cryptographic algorithms. These algorithms can be found in
table 4.2.

Active Directory Heimdal MIT Kerberos 5 Shishi
AES128/256-SHA1 3 3 3 3

CAMELLIA128/256-
CTS-CMAC 3

DES3-CBC-SHA1 3 3 3

DES-CBC-CRC (3) (3) (3)
DES-CBC-MD5 (3) (3) (3)
DES-CBC-MD4 (3) (3)
RC4-HMAC-EXP (3) (3)
RC4-HMAC 3 3 3 3

Table 4.2: Ciphers implemented, 3in parentheses are off by default

This table explains that there are two encryption types common for every
implementation of Kerberos. These are the AES128/256-SHA and the RC4-
HMAC encryption types. Windows uses RC4-HMAC and AES128/256-SHA by
default but disabled the DES encryption since Windows server 200810. This can
be enabled by explicitly configuring this.

During cross-realm configuration, Microsoft’s Active Directory uses the RC4-
HMAC encryption type for compatibility reasons and can only activate AES128/256-
SHA during the trust setup.

The DES and RC4-HMAC-EXP ciphers are considered to be weak[11]. There-
fore MIT Kerberos 5 and Active Directory have turned this cryptography off by
default. Heimdal takes it one step further by removing it from source code11.

MIT Kerberos 5 also added support for the relatively new CAMELLIA ci-
phers[12]. It won’t work with cross compatibility since none of the other imple-
mentations allow for this encryption type, yet.

4.3 Public-key cryptography

Kerberos also provides support for public-key cryptography that can be used
in, for example, smart cards. Shishi, version 1.0.2, is the only implementation
of Kerberos that does not support PKINIT at the time of writing.

Tests were limited to Heimdal and MIT Kerberos 5 using the specified EKU
as documented in [9]. We were unable to get Active Directory to function and

10Windows enabled encryption types http://technet.microsoft.com/en-us/library/

dd560670(v=ws.10).aspx
11Heimdal git https://github.com/heimdal/heimdal/pull/91

14

even accept public-key certificates. Since sources and documentation suggest
that Active Directory includes support for PKINIT we can only conclude that
we were unable to get it working.

MIT Kerberos 5 to MIT Kerberos 5 worked without issue after specifying
the certificate to use. The same goes for Heimdal to Heimdal. It should be
noted that the same certificate structure was used for both combinations.

However when using the Heimdal client to authenticate using PKINIT to
the MIT Kerberos 5 KDC an error occured. Analysis of packets send over the
network suggested that the MIT Kerberos 5 KDC found the “Crypto to weak”.
This was solved by forcing the Heimdal client to use public-key encryption
instead of Diffie-Hellman.

Further research remains to analyse the behaviour of Active Directory to
PKINIT request from either MIT Kerberos 5 or Heimdal.

4.4 Cross-realm interoperability

When configuring the different implementations to use cross-realm authentica-
tion, it can be concluded that all of the implementations, except for Shishi,
can work together. Results can be found in table 4.3. Although it looks like

Active Directory Heimdal MIT Kerberos 5 Shishi
Active Directory 3 3 3 7
Heimdal 3 3 3 7
MIT Kerberos 5 3 3 3 7
Shishi 7 7 7 7

Table 4.3: Cross-realm compatibility

Heimdal, MIT Kerberos 5, and Active Directory work well together, there are
some explicit settings required to cooperate with Active Directory. For one, the
encryption type must be set on RC4-HMAC12.

Furthermore, the trust wizard indicates that a realm must be configured with
lower case characters, but this must be done with capitals. The DNS records
must also be set up correctly. The realm name must have an A record towards
the IP-address and the SRV records must exist.

4.4.1 Active Directory

Windows Active Directory was tested with Heimdal and MIT Kerberos 5. This
is done by adding a trust policy in the Windows trust wizard. Both the realms
of the MIT Kerberos 5 and the Heimdal implementation are added in a two-way
trust relationship. To enforce the RC4 encryption type we entered the following
command in the command line:

ksetup /SetEncTypeAttre HEIMDAL. OS3 .NL RC4

12http://social.technet.microsoft.com/wiki/contents/articles/2751.

kerberos-interoperability-step-by-step-guide-for-windows-server-2003.aspx

15

The following principals were added on the Heimdal KDC:13

kerbtgt /AD. OS3 .NL@HEIMDAL. OS3 .NL
kerbtgt /HEIMDAL. OS3 .NL@AD. OS3 .NL

After the principals are added, other encryption types that will not work with
Active Directory, need to be removed. This is done by issuing the following
commands:13

kadmin de l enc type krbtgt /AD. OS3 .NL@HEIMDAL. OS3 .NL aes256−cts−hmac−sha1−96
kadmin de l enc type krbtgt /AD. OS3 .NL@HEIMDAL. OS3 .NL des3−cbc−sha1
kadmin de l enc type krbtgt /HEIMDAL. OS3 .NL@AD. OS3 .NL aes256−cts−hmac−sha1−96
kadmin de l enc type krbtgt /HEIMDAL. OS3 .NL@AD. OS3 .NL des3−cbc−sha1

After this, Windows needs to be rebooted and it works. The reason why
AES encryption did not function could not be determined.

13This is also what needs to be done for MIT Kerberos 5, replacing the HEIMDAL with
MIT.

16

5 Dynamic cross-realm authentication

When automatic cross realm authentication has to be implemented, one will
need several aspects to get to the result. One thing that is necessary is a way
to identify and find the realms used by client and server. This can be solved
by using the existing DNS solution as mentioned in section 4.1.2. Furthermore,
a solution must be found for establishing a key for cryptography between the
KDCs.

Ideally one would like to have a public key infrastructure. PKIs come in
several flavours, but can be reduced to three classes: a regular public key in-
frastructure, a third party trusted public key infrastructure or a public key
infrastructure using DANE[13].

Next we will discuss several options and methods we consider to be important
when creating a dynamic cross-realm authentication procedure.

5.1 Key sharing

Dynamic configuration for cross-realm authentication requires a means of estab-
lishing trust and secure connection between verified endpoints. As such symmet-
ric key algorithms become less attractive due to the need for key management
and distribution. Instead public-key cryptography can be used to facilitate se-
cure communications and authentication of realms.

This research describes two methods for facilitating the trust delegation of
keys. The first method uses a centralised hierarchical system and the second
utilises the existing DNS architecture to allow greater freedom for realms to
specify and share certificate information.

5.1.1 PKI

The first method in which keys can be shared is to establish a central authority.
In public key cryptography, as facilitated using X.509 certificates, this can be
accomplished by using a single certificate authority or to provide a certificate
store with the various implementations as is done with modern browsers.

Regardless of the method chosen eventually each realm should be able to
provide a certificate which validates against trust anchors. This certificate could
be retrieved at the time a KDC is requested for a cross-realm ticket.

5.1.2 DANE

The second method we describe is to use DNS-based Authentication of Named
Entities (DANE) to facilitate a mechanism to prove certificate authenticity for
a given realm. As DANE uses DNS records it is possible to delegate the trust to
DNSSEC. DNSSEC can be used to prove the validity of the certificate a realm
is expected to use. This makes it possible for a more varied group of certificate
authorities for realms. Including organisational CAs or self-signed certificates in
addition to all the normal trust anchors which might be available in a certificate
store.

17

The benefit of DANE is that it leverages an existing framework and does not
require a new organisation to maintain large indexes. A KDC simply returns
the certificate it wishes to use which can be validated using DANE.

Certificates can be requested by a KDC at the time a cross-realm ticket is
requested by a client. DANE should be used to validate the record supplied by
the remote KDC.

It should be noted that even when a PKI infrastructure is used DANE may
still offer added security by limiting what PKI should be trusted for a particular
realm.

5.2 Key revocation

An important consideration when using public-key cryptography for dynami-
cally authenticating remote KDCs for cross-realm operations is the possibility
for the authentication to change. Keys can expire, change, or be compromised
as such it is possible that a remote KDC uses a different certificate during op-
erations. When this happens, the trust should be reevaluated between KDCs.

This also means that mechanisms must exist before it can be utilised. If cer-
tificates are provided by a remote CA then these may be mentioned on certifi-
cate revocation lists. This means certificate revocation lists should be checked.
DANE may be used to provide further details and constraints by the realm
owner on what to trust.

5.3 Trust policies

Cross-realm authentication requires a level of trust. However this trust should
only be extended by trusting the authenticity of a user. As such any method
for cross-realm authentication should not impose minimum or maximum trust
to the client from the KDC.

This means that any application using a KDC which accepts cross-realm
clients to work on a minimum-trust principle. We suggest that the trust that
should be given be contained within the application domain. Dynamic cross-
realm authentication can be used to ensure that a client is a certain user in a
certain realm however it should not imply anything beyond that. If any trust
policy should be maintained it is not to trust anything.

If an application incorrectly imposes limits and only checks the principal
name instead of the realm name as provided this constitutes a breach of security.
As such it may be required to use separate KDCs for specific tasks unless the
application can be configured properly.

5.4 Time synchronisation

If a globally cross-realm system would function with random participants it is
important that all hosts adhere to strict timing. Due to Kerberos imposing time
constraints on tickets and cryptography it is imperative that any and all KDCs
participating in cross-realm operations be on the same time. This means that

18

when using an internal time server to synchronise all systems it is imperative
that the internal time server be synchronous with external sources.

19

6 Conclusion

We set out to find the state of cross-realm authentication between various im-
plementations. In the course of this research we found that many of the imple-
mentations work together fine, for the most part. Some small quirks exist in the
various implementations but for the simple usage scenario each implementation
is compatible with others. Cross-realm authentication is possible but only in
manually configured trusts. Various peculiarities have been found regarding the
ciphers supported and the search paths used by Kerberos 5.

In summary although there are differences in the implementations, they all
implement the correct Kerberos 5 protocol. Due to this every implementation
can communicate with one another. Most conflicts that occur, happen because
of other variables like for example encryption settings.

The implementations tested that provide the most compatible interface to
the Kerberos protocol are Heimdal and MIT Kerberos 5. Active Directory
although it adheres to the protocol has several quirks in both the cryptographic
support for cross-realm requests and the necessity to map services and hosts
onto users for internal administration. Shishi is promising because it has the
ability to implement the correct Kerberos specifications without being burdened
by legacy but has a long road ahead before hand.

Configuring Kerberos infrastructures is not always as clear as expected when
using different implementations. The protocol itself includes limited means to
ease configuration issues. Due to the shared secret philosophy this process is
difficult to automate. The use of public key cryptography between KDCs could
ease the administrative burden and configuration complexity. In the past some
attempts have been made to facilitate authentication by means of public key
cryptography and public key infrastructures. Via PKINIT clients can authen-
ticate with the KDC via secure public key cryptography. However PKINIT is
only specified for client authentication and can’t be used by hosts, services or
remote realms.

Finally some ideas have been proposed which might aid in the development
of a protocol extension enabling dynamic configuration for cross-realm authen-
tication. This has the benefit of lowering the difficulty in configuring internal
Kerberos networks and enabling easy authentication between clients and services
in different realms. However once the protocol is extended and the implemen-
tations include the changes there still remains much to be done. Applications
may need to be adjusted to correctly handle new situations in which valid clients
may be presented.

20

7 Future work

Complete Shishi

Shishi is far from complete. It still needs to implement the cross-realm func-
tionality as well as PKINIT and GSSAPI support. Because Shishi is greenfield
technology it is possible to correctly implement these features, without the bur-
dens of legacy, making for a promising future.

Better debugging in the implementations

Most of the implementations do not have a lot of feedback during configuration.
The output and logging are not verbose at all. Heimdal for example has no
debugging information when not configured at compile time. To improve work-
ability between implementations, it would be useful to get some information in
log files. This also extends to the error messages incorporated into the protocol.

Improve interoperability between implementations

There are several settings that differ greatly from one another. The encryption
ciphers have to be implemented to cooperate with each other. The implemen-
tation needs to look at both the salting and the key generation. Furthermore
several clients implement a certain leniency to user input which can cause prob-
lems later on. It is therefore advisable to be strict with user input and perhaps
include these limits and restrictions in the specification.

Use public-key cryptography for cross-realm authentication

The biggest hurdle for dynamic cross-realm authentication is that there is only
support for symmetric cryptography for cross-realm tickets. As long as this
remains so it is unlikely that cross-realm configuration can be automated. Over
the years some attempts have been made for adding public key cryptography
for cross-realm authentication and trust delegation. These attempts however
have failed to lead to a standard specification that could be implemented.

Another added benefit of adding public key support to cross-realm config-
urations is that it may lead to an increased ease of use when configuring local
realms. Instead of having to update password change procedures and rollovers
this could be delegated to the same method used for dynamic configuration.

21

References

[1] Jonathan T. Trostle, Irina Kosinovsky, and Michael M. Swift. “Implemen-
tation of Crossrealm Referral Handling in the MIT Kerberos Client.” In:
url: http://pages.cs.wisc.edu/~swift/papers/xrealm.pdf.

[2] I. Cervesato et al. “Specifying Kerberos 5 Cross-realm Authentication”.
In: Proceedings of the 2005 Workshop on Issues in the Theory of Security.
WITS ’05. Long Beach, California, 2005, pp. 12–26. isbn: 1-58113-980-2.

[3] Angelos D. Keromytis and Jonathan M. Smith. “Requirements for Scal-
able Access Control and Security Management Architectures”. In: ACM
Trans. Internet Technol. 7.2 (May 2007). issn: 1533-5399. doi: 10.1145/
1239971.1239972. url: http://doi.acm.org/10.1145/1239971.

1239972.

[4] Stefan Miltchev et al. “Decentralized Access Control in Distributed File
Systems”. In: ACM Comput. Surv. 40.3 (Aug. 2008), 10:1–10:30. issn:
0360-0300. doi: 10.1145/1380584.1380588. url: http://doi.acm.org/
10.1145/1380584.1380588.

[5] K. Kamada et al. “Design and evaluation of a client-friendly cross-realm
framework for Kerberos 5”. In: Industrial Informatics, 2008. INDIN 2008.
6th IEEE International Conference on. July 2008, pp. 541–546. doi: 10.
1109/INDIN.2008.4618160.

[6] C. Neuman et al. Public Key Cryptography for Cross-Realm Authentica-
tion in Kerberos. PKCROSS draft 08. Internet Engineering Task Force,
Nov. 2001. url: http://tools.ietf.org/html/draft- ietf- cat-

kerberos-pk-cross-08.txt.

[7] C. Neuman et al. The Kerberos Network Authentication Service (V5).
RFC 4120 (Proposed Standard). Updated by RFCs 4537, 5021, 5896, 6111,
6112, 6113, 6649, 6806. Internet Engineering Task Force, July 2005.

[8] L. Zhu, K. Jaganathan, and S. Hartman. The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism:
Version 2. RFC 4121 (Proposed Standard). Updated by RFCs 6112, 6542,
6649. Internet Engineering Task Force, July 2005.

[9] L. Zhu and B. Tung. Public Key Cryptography for Initial Authentication in
Kerberos (PKINIT). RFC 4556 (Proposed Standard). Updated by RFC
6112. Internet Engineering Task Force, June 2006. url: http://www.

ietf.org/rfc/rfc4556.txt.

[10] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the
location of services (DNS SRV). RFC 2782 (Proposed Standard). Updated
by RFC 6335. Internet Engineering Task Force, Feb. 2000. url: http:
//www.ietf.org/rfc/rfc2782.txt.

[11] L. Hornquist Astrand and T. Yu. Deprecate DES, RC4-HMAC-EXP, and
Other Weak Cryptographic Algorithms in Kerberos. RFC 6649 (Best Cur-
rent Practice). Internet Engineering Task Force, July 2012.

22

[12] G. Hudson. Camellia Encryption for Kerberos 5. RFC 6803 (Informa-
tional). Internet Engineering Task Force, Nov. 2012. url: http://www.
ietf.org/rfc/rfc6803.txt.

[13] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698 (Proposed Standard). Updated by RFC 7218. Internet Engineering
Task Force, Aug. 2012. url: http://www.ietf.org/rfc/rfc6698.txt.

23

A PKINIT EKU Extensions

Attached are the extensions for the X.509 certificates used in PKINIT tests.
More documentation and directions on how to use these extensions can be found
at http://web.mit.edu/kerberos/krb5-1.12/doc/admin/pkinit.html. The
realm and client principals are set using environment variables.

Listing 1: KDC certificate extension

[kdc c e r t]
b a s i c Co n s t r a i n t s=CA:FALSE
keyUsage=nonRepudiation , d i g i t a l S i g n a t u r e , keyEncipherment , keyAgreement
extendedKeyUsage = 1 . 3 . 6 . 1 . 5 . 2 . 3 . 5
s u b j e c t K e y I d e n t i f i e r=hash
a u t h o r i t y K e y I d e n t i f i e r=keyid , i s s u e r
issuerAltName=i s s u e r : copy
subjectAltName=otherName : 1 . 3 . 6 . 1 . 5 . 2 . 2 ;SEQUENCE: kdc princ name

[kdc princ name]
realm=EXP: 0 , Genera lSt r ing : ${ENV: :REALM}
pr inc ipa l name=EXP: 1 ,SEQUENCE: k d c p r i n c i p a l s e q

[k d c p r i n c i p a l s e q]
name type=EXP: 0 ,INTEGER: 1
name str ing=EXP: 1 ,SEQUENCE: k d c p r i n c i p a l s

[k d c p r i n c i p a l s]
pr inc1=Genera lSt r ing : krbtgt
pr inc2=Genera lSt r ing : ${ENV: :REALM}

Listing 2: Client certificate extension

[c l i e n t c e r t]
b a s i c Co n s t r a i n t s=CA:FALSE
keyUsage=d i g i t a l S i g n a t u r e , keyEncipherment , keyAgreement
extendedKeyUsage = 1 . 3 . 6 . 1 . 5 . 2 . 3 . 4
s u b j e c t K e y I d e n t i f i e r=hash
a u t h o r i t y K e y I d e n t i f i e r=keyid , i s s u e r
issuerAltName=i s s u e r : copy
subjectAltName=otherName : 1 . 3 . 6 . 1 . 5 . 2 . 2 ;SEQUENCE: princ name

[princ name]
realm=EXP: 0 , Genera lSt r ing : ${ENV: :REALM}
pr inc ipa l name=EXP: 1 ,SEQUENCE: p r i n c i p a l s e q

[p r i n c i p a l s e q]
name type=EXP: 0 ,INTEGER: 1
name str ing=EXP: 1 ,SEQUENCE: p r i n c i p a l s

24

[p r i n c i p a l s]
pr inc1=Genera lSt r ing : ${ENV: : CLIENT}

25

